POSTECH 인공지능대학원 안희갑 교수 - 김박사넷

교수 상세정보

2015~2019년 데이터를 기준으로
정리되어 있습니다.

POSTECH 재학생/졸업생의 평가

평가인원이 일정인원 이상 모이면 공개됩니다.


* 표시 항목은 평가가 부족하여 그래프에 나타나지 않음.

연구실의 장점에 대한 한줄평 평가하기

  • 이 분 관련해서는 학생들 사이에서도 좋은 이야기만 돌고 있습니다. 다른연구실들은 스탯 조작하고 댓글조작하기도 한다지만 이분은 진짜예요. 이 학교 같은 학과에서 최고로 좋으신 분입니다. 학술적으로 인간적으로 배우고 싶으시다면 꼭 가시길.

  • 요즘 들어 다른 랩에서 강압 처럼 보이는(?) 교수님 스탯 부풀리기가 있는 거 같은데, 그 것 때문에 안 교수님의 스탯에 오해가 올까봐 적습니다. 안교수님은 진짜입니다. 인품도 좋으시고 강의나 실력면에서 뛰어나십니다.

  • 제자들을 정말 아끼고 사랑해주시는 분..

  • .

  • 훌륭한 인품을 가지신 교수님이 합리적으로 연구실을 운영하십니다. 연구실 분위기도 자유롭고, 인건비도 최상급으로 받습니다. 이론쪽 연구실 치고는 논문도 잘 나오는 편이며, 열심히 지도해 주십니다.

  • 분위기도 좋고 최근 정부 연구과제를 받아 임금도 상한선으로 받습니다.연구실 비, 공금 등의 목적으로 걷는 돈도 없습니다.알고리즘에 관심이 있으신 분이 있다면 추천드립니다.

  • 제가 알고 있는 교수중에 가장 합리적으로 연구실을 운영합니다. 연구실 워라벨도 매우 적절하고, 수입도 대학원생으로 최상에 가깝습니다. 분야가 어렵고, 산업과 바로 연결되지 않는다는 점에서 진입장벽이 좀 있지만, 매우 좋은 연구실이라고 생각합니다.

2015~2019년 연구실 정보

'교신 SCIE 논문'은 해당 교수가 교신저자로 들어간 SCIE 논문의 숫자를 말합니다. 논문의 저자는 크게 주저자(1저자, 교신저자)와 공동 저자로 나뉘며 논문 작성의 기여도는 주저자가 더 높습니다. 교신저자는 학술지 편집자 또는 다른 연구자들과 연락을 취하는 논문의 책임자로 볼 수 있으며, 보통 해당 연구실의 교수가 교신저자가 됩니다. (통상 연구실의 대학원생이 1저자가 됩니다.)
즉, 교수가 교신저자인 논문은 해당 교수가 공저자인 경우보다도 해당 연구실의 대학원생이 연구에 직접적으로 참여한 연구실의 실적일 확률이 높습니다. 이 때문에 김박사넷에서는 교신 SCIE 논문을 기준으로 집계하고 있습니다.

SCIE 논문이란 Science Citation Index Extended의 약자로 미국 톰슨사이언티픽사가 집계하는 논문 데이터베이스를 뜻합니다. (2020년부터 SCI, SCIE의 구분이 사라지고 'SCIE'로 통합되었습니다.) 논문에도 급이 있다고 가정한다면, 위와 같은 공신력 있는 기관에서 인정한 학술지에 게재된 논문들이 SCIE 논문입니다. (이 기준에 대한 논란도 있어 SCIE '급' 이라는 이름으로 SCIE, SSCI, A&HCL, SCOPUS 등의 분류체계도 있는데, 대동소이합니다. 어떤 학술지가 SCIE 급인지 확인하는 방법은 http://mjl.clarivate.com/ 에서 검색해 볼 수 있습니다.)

피인용 횟수는 해당 논문을 다른 논문에서 얼마나 인용하였는 지를 나타냅니다. 인용이 많이 되었다는 것은 그만큼 다른 연구자들도 관심을 많이 가지는 연구분야의 논문이라는 뜻으로, 피인용 횟수가 높을수록 좋은 논문이라고 여겨집니다. (피인용 횟수는 분야별로 차이가 크기 때문에 동일분야 논문끼리 비교해야 합니다.)
좋은 논문을 판별하는 다른 기준은 어떤 학술지에 게재되었는 지를 살펴보는 것입니다. 학술지의 게재논문이 한 해 동안 평균적으로 얼마나 인용되고 있는 지를 알려주는 지표가 impact factor이며, 보통 이 수치가 높을수록 좋은 학술지라고 합니다. (추후 SCIE 논문의 impact factor에 대한 정보도 추가할 예정입니다.)
* 피인용 횟수는 bing.com기준으로 산정하였습니다.
* 2020년부터 SCI, SCIE의 구분이 사라지고 'SCIE'로 통합되었습니다.

논문정보는 이메일 기준의 교신저자 논문이며, 피인용 횟수는 교신저자 논문의 피인용 횟수입니다. (bing.com검색결과 기준) 요청사항은 오류 수정요청을 이용해주세요


로그인이 필요합니다.

로그인 하기
 예시 보기

동일계열 (컴퓨터공학) 연구실과 비교

동일계열 연구실을 비교하는 이유는 연구 분야마다 논문의 수와 피인용 횟수가 상이하기 때문입니다. 상대적으로 논문이 잘 나오는 분야가 있는 반면, 졸업 때까지 한 편의 논문을 쓰기도 힘든 분야도 있습니다.
따라서 단순히 논문 수나 피인용 횟수만 비교하는 것보다 동일계열 연구실과의 상대적인 실적을 비교하는 것이 해당 연구실의 실적을 파악하는 데 좀 더 용이할 것입니다.
* 피인용 횟수는 bing.com기준으로 산정하였습니다.

해당 연구실은 파란색으로 표시


로그인이 필요합니다.

로그인 하기
 예시 보기

동일계열 (뇌과학) 연구실과 비교

동일계열 연구실을 비교하는 이유는 연구 분야마다 논문의 수와 피인용 횟수가 상이하기 때문입니다. 상대적으로 논문이 잘 나오는 분야가 있는 반면, 졸업 때까지 한 편의 논문을 쓰기도 힘든 분야도 있습니다.
따라서 단순히 논문 수나 피인용 횟수만 비교하는 것보다 동일계열 연구실과의 상대적인 실적을 비교하는 것이 해당 연구실의 실적을 파악하는 데 좀 더 용이할 것입니다.
* 피인용 횟수는 bing.com기준으로 산정하였습니다.

해당 연구실은 파란색으로 표시


로그인이 필요합니다.

로그인 하기
 예시 보기

교신 SCIE논문 TOP 5

해당 교수의 교신 SCIE 논문 중 피인용 횟수가 가장 높은 논문을 추린 목록으로, 해당 교수의 논문 중 가장 영향력 있는 논문이라고 할 수 있습니다.
논문의 전문(全文)이 다운로드가 안 되는 경우, 해당 교수 홈페이지에서 확인하거나, 본인의 소속 대학이 논문의 전문을 제공하는 유료 서비스(Web of Knowledge, Scopus 등)에 가입되어 있는 경우, 이를 통해 확인할 수 있습니다.
* 피인용 횟수는 bing.com기준으로 산정하였습니다.
* 2020년부터 SCI, SCIE의 구분이 사라지고 'SCIE'로 통합되었습니다.

2015~2019년 교신저자 논문중 피인용횟수 순.


로그인이 필요합니다.

로그인 하기
 예시 보기

수정사항이 있을 경우 오류 수정요청을 이용해 주세요.