교수 상세정보

2015~2019년 데이터를 기준으로
정리되어 있습니다.

KAIST 재학생/졸업생의 평가

평가인원이 일정인원 이상 모이면 공개됩니다.


* 표시 항목은 평가가 부족하여 그래프에 나타나지 않음.

연구실의 장점에 대한 한줄평 평가하기

  • 장점 : 과제가 많아 인건비가 안정적. 사람이 많고 연구분야가 다양. 연구적, 생활적(?)으로 마음이 맞는 사람을 찾기가 좋음(이라고 생각함) 단점 : 과제가 많음...

  • 석사과정에 나쁜 쪽의 역대급 학생이 있음. 25명 내외의 큰 랩인데 이 사람 하나 때문에 단합이 잘 안 될 정도. 다루는 분야는 넓은데 포닥은 실험 파트에만 있음

  • ...

  • 교수님께서 연구에 매우 열정적이시며 연구와 관련된 지원을 아끼지 않으심. 연구실 분위기는 자유롭고 구성원들도 훌륭함. 특히 구성원들이 다양한 방법론으로 연구를 진행하기 때문에 여러모로 많이 배울 수 있음.

  • 자율적 분위기. 열심히할 자세가 되어있고, 포지셔닝만 잘한다면 좋은성과를 낼수있음. 인건비 안정적임.

  • 논문 지도를 잘 해주심 (한줄씩 읽어가며 함께 수정해 주심). 교수님이 연구비를 잘 수주하시는 편이기 때문에 학생이 의지가 있다면 다양한 연구를 진행할 수 있음. 단, 교수님이 학문적으로 기대하시는 바가 높아 학생의 노력이 많이 요구됨.

  • ...

  • ...

  • ...

  • 장점: 자율적 연구 환경, 단점: 졸업 연수 (평균 6.5년)

  • 연구실 분위기는 화목함.교수님은 성실하시고 연구 방향에 통찰이 뛰어남.강의는 들어본 적이 없어서 모르겠음.다만 개인이 참여하는 프로젝트 수가 많고 그에 따라 미팅도 많은 편.

  • ...

  • 이론 연구와 실험 연구를 동시에 진행하는 연구실. 구성원들의 전공과 배경이 다양하여 원만한 분위기. 과제 수급이 잘 되어서 다른 연구실들에 비해 실질 인건비가 좋은 편. 교수님의 연구/논문 지도력이 우수함.

  • 졸업 기간이 정해진 석사 생활을 하기에 적합한 연구실

  • 수업 때 이미지와 랩내 분위기는 현저히 다르므로 참고

  • 학생들의 인품이 훌륭함. 한 명의 학생이 참여하는 연구과제 개수가 너무 많음.

  • 노력을 중요시하는 교수

  • 교수님께서는 해당 분야의 발전 방향에 대한 예측 및 이를 reference로 삼은 연구방향선정에 있어서 뛰어나십니다.

  • ...

  • .....

2015~2019년 연구실 정보

'교신 SCIE 논문'은 해당 교수가 교신저자로 들어간 SCIE 논문의 숫자를 말합니다. 논문의 저자는 크게 주저자(1저자, 교신저자)와 공동 저자로 나뉘며 논문 작성의 기여도는 주저자가 더 높습니다. 교신저자는 학술지 편집자 또는 다른 연구자들과 연락을 취하는 논문의 책임자로 볼 수 있으며, 보통 해당 연구실의 교수가 교신저자가 됩니다. (통상 연구실의 대학원생이 1저자가 됩니다.)
즉, 교수가 교신저자인 논문은 해당 교수가 공저자인 경우보다도 해당 연구실의 대학원생이 연구에 직접적으로 참여한 연구실의 실적일 확률이 높습니다. 이 때문에 김박사넷에서는 교신 SCIE 논문을 기준으로 집계하고 있습니다.

SCIE 논문이란 Science Citation Index Extended의 약자로 미국 톰슨사이언티픽사가 집계하는 논문 데이터베이스를 뜻합니다. (2020년부터 SCI, SCIE의 구분이 사라지고 'SCIE'로 통합되었습니다.) 논문에도 급이 있다고 가정한다면, 위와 같은 공신력 있는 기관에서 인정한 학술지에 게재된 논문들이 SCIE 논문입니다. (이 기준에 대한 논란도 있어 SCIE '급' 이라는 이름으로 SCIE, SSCI, A&HCL, SCOPUS 등의 분류체계도 있는데, 대동소이합니다. 어떤 학술지가 SCIE 급인지 확인하는 방법은 http://mjl.clarivate.com/ 에서 검색해 볼 수 있습니다.)

피인용 횟수는 해당 논문을 다른 논문에서 얼마나 인용하였는 지를 나타냅니다. 인용이 많이 되었다는 것은 그만큼 다른 연구자들도 관심을 많이 가지는 연구분야의 논문이라는 뜻으로, 피인용 횟수가 높을수록 좋은 논문이라고 여겨집니다. (피인용 횟수는 분야별로 차이가 크기 때문에 동일분야 논문끼리 비교해야 합니다.)
좋은 논문을 판별하는 다른 기준은 어떤 학술지에 게재되었는 지를 살펴보는 것입니다. 학술지의 게재논문이 한 해 동안 평균적으로 얼마나 인용되고 있는 지를 알려주는 지표가 impact factor이며, 보통 이 수치가 높을수록 좋은 학술지라고 합니다. (추후 SCIE 논문의 impact factor에 대한 정보도 추가할 예정입니다.)
* 피인용 횟수는 bing.com기준으로 산정하였습니다.
* 2020년부터 SCI, SCIE의 구분이 사라지고 'SCIE'로 통합되었습니다.

논문정보는 이메일 기준의 교신저자 논문이며, 피인용 횟수는 교신저자 논문의 피인용 횟수입니다. (bing.com검색결과 기준) 요청사항은 오류 수정요청을 이용해주세요


로그인이 필요합니다.

로그인 하기
 예시 보기

동일계열 (뇌공학) 연구실과 비교

동일계열 연구실을 비교하는 이유는 연구 분야마다 논문의 수와 피인용 횟수가 상이하기 때문입니다. 상대적으로 논문이 잘 나오는 분야가 있는 반면, 졸업 때까지 한 편의 논문을 쓰기도 힘든 분야도 있습니다.
따라서 단순히 논문 수나 피인용 횟수만 비교하는 것보다 동일계열 연구실과의 상대적인 실적을 비교하는 것이 해당 연구실의 실적을 파악하는 데 좀 더 용이할 것입니다.
* 피인용 횟수는 bing.com기준으로 산정하였습니다.

해당 연구실은 파란색으로 표시


로그인이 필요합니다.

로그인 하기
 예시 보기

동일계열 (생명공학) 연구실과 비교

동일계열 연구실을 비교하는 이유는 연구 분야마다 논문의 수와 피인용 횟수가 상이하기 때문입니다. 상대적으로 논문이 잘 나오는 분야가 있는 반면, 졸업 때까지 한 편의 논문을 쓰기도 힘든 분야도 있습니다.
따라서 단순히 논문 수나 피인용 횟수만 비교하는 것보다 동일계열 연구실과의 상대적인 실적을 비교하는 것이 해당 연구실의 실적을 파악하는 데 좀 더 용이할 것입니다.
* 피인용 횟수는 bing.com기준으로 산정하였습니다.

해당 연구실은 파란색으로 표시


로그인이 필요합니다.

로그인 하기
 예시 보기

교신 SCIE논문 TOP 5

해당 교수의 교신 SCIE 논문 중 피인용 횟수가 가장 높은 논문을 추린 목록으로, 해당 교수의 논문 중 가장 영향력 있는 논문이라고 할 수 있습니다.
논문의 전문(全文)이 다운로드가 안 되는 경우, 해당 교수 홈페이지에서 확인하거나, 본인의 소속 대학이 논문의 전문을 제공하는 유료 서비스(Web of Knowledge, Scopus 등)에 가입되어 있는 경우, 이를 통해 확인할 수 있습니다.
* 피인용 횟수는 bing.com기준으로 산정하였습니다.
* 2020년부터 SCI, SCIE의 구분이 사라지고 'SCIE'로 통합되었습니다.

2015~2019년 교신저자 논문중 피인용횟수 순.


로그인이 필요합니다.

로그인 하기
 예시 보기

2015~2019년 졸업생 정보

졸업생 정보를 통해 해당 연구실을 얼마나 많은 사람들이 거쳐갔는지 알 수 있습니다.
2015년을 기준으로 비교하는 이유는 임용된 지 얼마 안 된 교수는 졸업생 숫자가 적을 수밖에 없기 때문입니다.


로그인이 필요합니다.

로그인 하기
 예시 보기

모든 졸업생 정보

현재까지 졸업한 모든 졸업생 데이터를 기반으로 '석사입학생 중 박사졸업생의 비율'을 산출하였습니다.
이는 해당 연구실로 석사과정 입학 후 박사과정을 거쳐 박사학위까지 받은 졸업생의 비율로, 항상 그런 건 아니지만, 이 비율이 높다면 해당 연구실에 긍정적인 요소가 많아서 그런 것일 수도 있습니다. 물론 관심있는 연구 분야의 타 교수들과의 비교, 동일계열 연구실과의 비교, 학생들의 한줄평 등 여러 요소들을 종합적으로 판단해 평가를 내리는 것이 좋겠습니다.


로그인이 필요합니다.

로그인 하기
 예시 보기

연도별 졸업생 수 (5개년)

졸업생 수 추이와 해당 연구실의 연혁을 확인할 수 있습니다.

현재 서울대학교, KAIST만 지원하며 타 대학원은 업데이트 예정


로그인이 필요합니다.

로그인 하기
 예시 보기

박사입학 후 졸업까지 필요한 평균 학기수

졸업까지 상당한 시간이 필요한 석박통합/박사과정생에게는 미래 계획을 위해 해당 연구실의 평균 학위취득 소요 기간을 아는 것이 중요합니다.
* 제공되는 데이터에는 파트타임 박사졸업생이 포함되어 있어, 전업학생의 경우 그 기간이 조금 더 짧을 수 있습니다. (향후 표준편차 정보를 제공할 예정입니다.)

현재 서울대학교, KAIST만 지원하며 타 대학원은 업데이트 예정


로그인이 필요합니다.

로그인 하기
 예시 보기

수정사항이 있을 경우 오류 수정요청을 이용해 주세요.